|

Build a Multi-Agent System for Integrated Transcriptomic, Proteomic, and Metabolomic Data Interpretation with Pathway Reasoning

⏱

In this tutorial, we construct a complicated multi-agent pipeline that interprets built-in omics information, together with transcriptomics, proteomics, and metabolomics, to uncover key organic insights. We start by producing coherent artificial datasets that mimic real looking organic tendencies and then transfer step-by-step by way of brokers designed for statistical evaluation, community inference, pathway enrichment, and drug repurposing. Each element contributes to a cumulative interpretation course of that permits us to determine important genes, infer causal hyperlinks, and generate biologically sound hypotheses supported by information patterns. Check out the FULL CODES here.

import numpy as np
import pandas as pd
from collections import defaultdict, deque
from dataclasses import dataclass
from typing import Dict, List, Tuple
import warnings
warnings.filterwarnings('ignore')


PATHWAY_DB = {
   'Glycolysis': {'genes': ['HK2', 'PFKM', 'PKM', 'LDHA', 'GAPDH', 'ENO1'],
                  'metabolites': ['Glucose', 'G6P', 'F16BP', 'Pyruvate', 'Lactate'], 'rating': 0},
   'TCA_Cycle': {'genes': ['CS', 'IDH1', 'IDH2', 'OGDH', 'SDHA', 'MDH2'],
                 'metabolites': ['Citrate', 'Isocitrate', 'α-KG', 'Succinate', 'Malate'], 'rating': 0},
   'Oxidative_Phosphorylation': {'genes': ['NDUFA1', 'NDUFB5', 'COX5A', 'COX7A1', 'ATP5A1', 'ATP5B'],
                                  'metabolites': ['ATP', 'ADP', 'NAD+', 'NADH'], 'rating': 0},
   'Fatty_Acid_Synthesis': {'genes': ['ACACA', 'FASN', 'SCD1', 'ACLY'],
                            'metabolites': ['Malonyl-CoA', 'Palmitate', 'Oleate'], 'rating': 0},
   'Fatty_Acid_Oxidation': {'genes': ['CPT1A', 'ACOX1', 'HADHA', 'ACADM'],
                            'metabolites': ['Acyl-CoA', 'Acetyl-CoA'], 'rating': 0},
   'Amino_Acid_Metabolism': {'genes': ['GOT1', 'GOT2', 'GLUD1', 'BCAT1', 'BCAT2'],
                             'metabolites': ['Glutamate', 'Glutamine', 'Alanine', 'Aspartate'], 'rating': 0},
   'Pentose_Phosphate': {'genes': ['G6PD', 'PGD', 'TKTL1'],
                         'metabolites': ['R5P', 'NADPH'], 'rating': 0},
   'Cell_Cycle_G1S': {'genes': ['CCND1', 'CDK4', 'CDK6', 'RB1', 'E2F1'], 'metabolites': [], 'rating': 0},
   'Cell_Cycle_G2M': {'genes': ['CCNB1', 'CDK1', 'CDC25C', 'WEE1'], 'metabolites': [], 'rating': 0},
   'Apoptosis': {'genes': ['BCL2', 'BAX', 'BID', 'CASP3', 'CASP8', 'CASP9'], 'metabolites': [], 'rating': 0},
   'mTOR_Signaling': {'genes': ['MTOR', 'RPTOR', 'RICTOR', 'AKT1', 'TSC1', 'TSC2'],
                      'metabolites': ['Leucine', 'ATP'], 'rating': 0},
   'HIF1_Signaling': {'genes': ['HIF1A', 'EPAS1', 'VEGFA', 'SLC2A1'], 'metabolites': ['Lactate'], 'rating': 0},
   'p53_Signaling': {'genes': ['TP53', 'MDM2', 'CDKN1A', 'BAX'], 'metabolites': [], 'rating': 0},
   'PI3K_AKT': {'genes': ['PIK3CA', 'AKT1', 'AKT2', 'PTEN', 'PDK1'], 'metabolites': [], 'rating': 0},
}


GENE_INTERACTIONS = {
   'HK2': ['PFKM', 'HIF1A', 'MTOR'], 'PFKM': ['PKM', 'HK2'], 'PKM': ['LDHA', 'HIF1A'],
   'MTOR': ['AKT1', 'HIF1A', 'TSC2'], 'HIF1A': ['VEGFA', 'SLC2A1', 'PKM', 'LDHA'],
   'TP53': ['MDM2', 'CDKN1A', 'BAX', 'CASP3'], 'AKT1': ['MTOR', 'TSC2', 'MDM2'],
   'CCND1': ['CDK4', 'RB1'], 'CDK4': ['RB1'], 'RB1': ['E2F1'],
}


DRUG_TARGETS = {
   'Metformin': ['NDUFA1'], 'Rapamycin': ['MTOR'], '2-DG': ['HK2'],
   'Bevacizumab': ['VEGFA'], 'Palbociclib': ['CDK4', 'CDK6'], 'Nutlin-3': ['MDM2']
}


@dataclass
class OmicsProfile:
   transcriptomics: pd.DataBody
   proteomics: pd.DataBody
   metabolomics: pd.DataBody
   metadata: Dict

We arrange the organic foundations of our system. We outline pathway databases, gene–gene interactions, and drug–goal mappings that function the reference community for all downstream analyses. We additionally import important libraries and create a information class to retailer the multi-omics datasets in an organized format. Check out the FULL CODES here.

class AdvancedOmicsGenerator:
   @staticmethod
   def generate_coherent_omics(n_samples=30, n_timepoints=4, noise=0.2):
       genes = record(set(g for p in PATHWAY_DB.values() for g in p['genes']))
       metabolites = record(set(m for p in PATHWAY_DB.values() for m in p['metabolites'] if m))
       proteins = [f"P_{g}" for g in genes]
       n_control = n_samples // 2
       samples_per_tp = n_samples // n_timepoints
       trans = np.random.randn(len(genes), n_samples) * noise + 10
       metab = np.random.randn(len(metabolites), n_samples) * noise + 5
       for tp in vary(n_timepoints):
           start_idx = n_control + tp * samples_per_tp
           end_idx = start_idx + samples_per_tp
           development = (tp + 1) / n_timepoints
           for i, gene in enumerate(genes):
               if gene in PATHWAY_DB['Glycolysis']['genes']:
                   trans[i, start_idx:end_idx] += np.random.uniform(1.5, 3.5) * development
               elif gene in PATHWAY_DB['Oxidative_Phosphorylation']['genes']:
                   trans[i, start_idx:end_idx] -= np.random.uniform(1, 2.5) * development
               elif gene in PATHWAY_DB['Cell_Cycle_G1S']['genes'] + PATHWAY_DB['Cell_Cycle_G2M']['genes']:
                   trans[i, start_idx:end_idx] += np.random.uniform(1, 2) * development
               elif gene in PATHWAY_DB['HIF1_Signaling']['genes']:
                   trans[i, start_idx:end_idx] += np.random.uniform(2, 4) * development
               elif gene in PATHWAY_DB['p53_Signaling']['genes']:
                   trans[i, start_idx:end_idx] -= np.random.uniform(0.5, 1.5) * development
           for i, met in enumerate(metabolites):
               if met in ['Lactate', 'Pyruvate', 'G6P']:
                   metab[i, start_idx:end_idx] += np.random.uniform(1.5, 3) * development
               elif met in ['ATP', 'Citrate', 'Malate']:
                   metab[i, start_idx:end_idx] -= np.random.uniform(1, 2) * development
               elif met in ['NADPH']:
                   metab[i, start_idx:end_idx] += np.random.uniform(1, 2) * development
       prot = trans * 0.8 + np.random.randn(*trans.form) * (noise * 2)
       situations = ['Control'] * n_control + [f'Disease_T{i//samples_per_tp}' for i in range(n_samples - n_control)]
       trans_df = pd.DataBody(trans, index=genes, columns=[f"S{i}_{c}" for i, c in enumerate(conditions)])
       prot_df = pd.DataBody(prot, index=proteins, columns=trans_df.columns)
       metab_df = pd.DataBody(metab, index=metabolites, columns=trans_df.columns)
       metadata = {'situations': situations, 'n_timepoints': n_timepoints}
       return OmicsProfile(trans_df, prot_df, metab_df, metadata)


class StatisticalAgent:
   @staticmethod
   def differential_analysis(data_df, control_samples, disease_samples):
       management = data_df[control_samples]
       illness = data_df[disease_samples]
       fc = (illness.imply(axis=1) - management.imply(axis=1))
       pooled_std = np.sqrt((management.var(axis=1) + illness.var(axis=1)) / 2)
       t_stat = fc / (pooled_std + 1e-6)
       p_values = 2 * (1 - np.minimal(np.abs(t_stat) / (np.abs(t_stat).max() + 1e-6), 0.999))
       sorted_pvals = np.type(p_values)
       ranks = np.searchsorted(sorted_pvals, p_values) + 1
       fdr = p_values * len(p_values) / ranks
       return pd.DataBody({'log2FC': fc, 't_stat': t_stat, 'p_value': p_values,
           'FDR': np.minimal(fdr, 1.0), 'important': (np.abs(fc) > 1.0) & (fdr < 0.05)}).sort_values('log2FC', ascending=False)


   @staticmethod
   def temporal_analysis(data_df, metadata):
       timepoints = metadata['n_timepoints']
       samples_per_tp = data_df.form[1] // (timepoints + 1)
       tendencies = {}
       for gene in data_df.index:
           means = []
           for tp in vary(timepoints):
               begin = samples_per_tp + tp * samples_per_tp
               finish = begin + samples_per_tp
               means.append(data_df.iloc[:, start:end].loc[gene].imply())
           if len(means) > 1:
               x = np.arange(len(means))
               coeffs = np.polyfit(x, means, deg=min(2, len(means)-1))
               tendencies[gene] = {'slope': coeffs[0] if len(coeffs) > 1 else 0, 'trajectory': means}
       return tendencies

We give attention to producing artificial however biologically coherent multi-omics information and performing the preliminary statistical evaluation. We simulate illness development throughout timepoints and compute fold adjustments, p-values, and FDR-corrected significance ranges for genes, proteins, and metabolites. We additionally study temporal tendencies to seize how expression values evolve over time. Check out the FULL CODES here.

class NetworkAnalysisAgent:
   def __init__(self, interactions):
       self.graph = interactions
   def find_master_regulators(self, diff_genes):
       sig_genes = diff_genes[diff_genes['significant']].index.tolist()
       impact_scores = {}
       for gene in sig_genes:
           if gene in self.graph:
               downstream = self._bfs_downstream(gene, max_depth=2)
               sig_downstream = [g for g in downstream if g in sig_genes]
               impact_scores[gene] = {
                   'downstream_count': len(downstream),
                   'sig_downstream': len(sig_downstream),
                   'rating': len(sig_downstream) / (len(downstream) + 1),
                   'fc': diff_genes.loc[gene, 'log2FC']
               }
       return sorted(impact_scores.objects(), key=lambda x: x[1]['score'], reverse=True)
   def _bfs_downstream(self, begin, max_depth=2):
       visited, queue = set(), deque([(start, 0)])
       downstream = []
       whereas queue:
           node, depth = queue.popleft()
           if depth >= max_depth or node in visited:
               proceed
           visited.add(node)
           if node in self.graph:
               for neighbor in self.graph[node]:
                   if neighbor not in visited:
                       downstream.append(neighbor)
                       queue.append((neighbor, depth + 1))
       return downstream
   def causal_inference(self, diff_trans, diff_prot, diff_metab):
       causal_links = []
       for gene in diff_trans[diff_trans['significant']].index:
           gene_fc = diff_trans.loc[gene, 'log2FC']
           protein = f"P_{gene}"
           if protein in diff_prot.index:
               prot_fc = diff_prot.loc[protein, 'log2FC']
               correlation = np.signal(gene_fc) == np.signal(prot_fc)
               if correlation and abs(prot_fc) > 0.5:
                   causal_links.append(('transcription', gene, protein, gene_fc, prot_fc))
           for pathway, content material in PATHWAY_DB.objects():
               if gene in content material['genes']:
                   for metab in content material['metabolites']:
                       if metab in diff_metab.index and diff_metab.loc[metab, 'significant']:
                           metab_fc = diff_metab.loc[metab, 'log2FC']
                           causal_links.append(('enzymatic', gene, metab, gene_fc, metab_fc))
       return causal_links

We implement the community evaluation agent that identifies grasp regulators and infers causal relationships. We make the most of graph traversal to evaluate the affect of every gene on others and to determine connections between transcriptional, proteomic, and metabolic layers. This helps us perceive which nodes have the best downstream affect on organic processes. Check out the FULL CODES here.

class PathwayEnrichmentAgent:
   def __init__(self, pathway_db, interactions):
       self.pathway_db = pathway_db
       self.interactions = interactions
   def topology_weighted_enrichment(self, diff_genes, diff_metab, network_agent):
       enriched = {}
       for pathway, content material in self.pathway_db.objects():
           sig_genes = [g for g in content['genes'] if g in diff_genes.index and diff_genes.loc[g, 'significant']]
           weighted_score = 0
           for gene in sig_genes:
               base_score = abs(diff_genes.loc[gene, 'log2FC'])
               downstream = network_agent._bfs_downstream(gene, max_depth=1)
               centrality = len(downstream) / 10
               weighted_score += base_score * (1 + centrality)
           sig_metabs = [m for m in content['metabolites'] if m in diff_metab.index and diff_metab.loc[m, 'significant']]
           metab_score = sum(abs(diff_metab.loc[m, 'log2FC']) for m in sig_metabs)
           total_score = (weighted_score + metab_score * 2) / max(len(content material['genes']) + len(content material['metabolites']), 1)
           if total_score > 0.5:
               enriched[pathway] = {'rating': total_score, 'genes': sig_genes, 'metabolites': sig_metabs,
                   'gene_fc': {g: diff_genes.loc[g, 'log2FC'] for g in sig_genes},
                   'metab_fc': {m: diff_metab.loc[m, 'log2FC'] for m in sig_metabs},
                   'coherence': self._pathway_coherence(sig_genes, diff_genes)}
       return enriched
   def _pathway_coherence(self, genes, diff_genes):
       if len(genes) < 2:
           return 0
       fcs = [diff_genes.loc[g, 'log2FC'] for g in genes]
       same_direction = sum(1 for fc in fcs if np.signal(fc) == np.signal(fcs[0]))
       return same_direction / len(genes)

We add pathway-level reasoning by incorporating topology-weighted enrichment evaluation. We assess which organic pathways exhibit important activation or suppression and weight them in accordance with community centrality to replicate their broader affect. The agent additionally evaluates pathway coherence, indicating whether or not genes in a pathway exhibit constant directional motion. Check out the FULL CODES here.

class DrugRepurposingAgent:
   def __init__(self, drug_db):
       self.drug_db = drug_db


   def predict_drug_response(self, diff_genes, master_regulators):
       predictions = []
       for drug, targets in self.drug_db.objects():
           rating = 0
           affected_targets = []
           for goal in targets:
               if goal in diff_genes.index:
                   fc = diff_genes.loc[target, 'log2FC']
                   is_sig = diff_genes.loc[target, 'significant']
                   if is_sig:
                       drug_benefit = -fc if fc > 0 else 0
                       rating += drug_benefit
                       affected_targets.append((goal, fc))
                   if goal in [mr[0] for mr in master_regulators[:5]]:
                       rating += 2
           if rating > 0:
               predictions.append({
                   'drug': drug,
                   'rating': rating,
                   'targets': affected_targets,
                   'mechanism': 'Inhibition of upregulated pathway'
               })
       return sorted(predictions, key=lambda x: x['score'], reverse=True)


class AIHypothesisEngine:
   def generate_comprehensive_report(self, omics_data, analysis_results):
       report = ["="*80, "ADVANCED MULTI-OMICS INTERPRETATION REPORT", "="*80, ""]
       tendencies = analysis_results['temporal']
       top_trends = sorted(tendencies.objects(), key=lambda x: abs(x[1]['slope']), reverse=True)[:5]
       report.append("⏱  TEMPORAL DYNAMICS ANALYSIS:")
       for gene, information in top_trends:
           route = "↑ Increasing" if information['slope'] > 0 else "↓ Decreasing"
           report.append(f"  {gene}: {route} (slope: {information['slope']:.3f})")
       report.append("n🕸  MASTER REGULATORS (Top 5):")
       for gene, information in analysis_results['master_regs'][:5]:
           report.append(f"  • {gene}: Controls {information['sig_downstream']} dysregulated genes (FC: {information['fc']:+.2f}, Impact: {information['score']:.3f})")
       report.append("n🧬 ENRICHED PATHWAYS:")
       for pathway, information in sorted(analysis_results['pathways'].objects(), key=lambda x: x[1]['score'], reverse=True):
           report.append(f"n  â–ş {pathway} (Score: {information['score']:.3f}, Coherence: {information['coherence']:.2f})")
           report.append(f"    Genes: {', '.be part of(information['genes'][:6])}")
           if information['metabolites']:
               report.append(f"    Metabolites: {', '.be part of(information['metabolites'][:4])}")
       report.append("nđź”— CAUSAL RELATIONSHIPS (Top 10):")
       for link_type, supply, goal, fc1, fc2 in analysis_results['causal'][:10]:
           report.append(f"  {supply} →[{link_type}]→ {goal} (FC: {fc1:+.2f} → {fc2:+.2f})")
       report.append("nđź’Š DRUG REPURPOSING PREDICTIONS:")
       for pred in analysis_results['drugs'][:5]:
           report.append(f"  • {pred['drug']} (Score: {pred['score']:.2f})")
           report.append(f"    Targets: {', '.be part of([f'{t[0]}({t[1]:+.1f})' for t in pred['targets']])}")
       report.append("n🤖 AI-GENERATED BIOLOGICAL HYPOTHESES:n")
       for i, hyp in enumerate(self._generate_advanced_hypotheses(analysis_results), 1):
           report.append(f"{i}. {hyp}n")
       report.append("="*80)
       return "n".be part of(report)


   def _generate_advanced_hypotheses(self, outcomes):
       hypotheses = []
       pathways = outcomes['pathways']
       if 'Glycolysis' in pathways and 'Oxidative_Phosphorylation' in pathways:
           glyc = pathways['Glycolysis']['score']
           oxphos = pathways['Oxidative_Phosphorylation']['score']
           if glyc > oxphos * 1.5:
               hypotheses.append(
                   "WARBURG EFFECT DETECTED: Aerobic glycolysis upregulation with oxidative phosphorylation suppression suggests metabolic reprogramming pushed by HIF1A."
               )
       if 'Cell_Cycle_G1S' in pathways and 'mTOR_Signaling' in pathways:
           hypotheses.append(
               "PROLIFERATIVE SIGNATURE: Cell-cycle activation with mTOR signaling signifies anabolic reprogramming; twin CDK4/6 and mTOR inhibition could also be efficient."
           )
       if outcomes['master_regs']:
           top_mr = outcomes['master_regs'][0]
           hypotheses.append(
               f"UPSTREAM REGULATOR: {top_mr[0]} controls {top_mr[1]['sig_downstream']} dysregulated genes; concentrating on this node can propagate network-wide correction."
           )
       tendencies = outcomes['temporal']
       progressive = [g for g, d in trends.items() if abs(d['slope']) > 0.5]
       if len(progressive) > 5:
           hypotheses.append(
               f"PROGRESSIVE DYSREGULATION: {len(progressive)} genes present sturdy temporal shifts, indicating evolving pathology and profit from early pathway intervention."
           )
       if 'HIF1_Signaling' in pathways:
           hypotheses.append(
               "HYPOXIA RESPONSE: HIF1 signaling suggests oxygen-poor microenvironment; anti-angiogenic methods might normalize perfusion."
           )
       if 'p53_Signaling' in pathways:
           hypotheses.append(
               "TUMOR SUPPRESSOR LOSS: p53 pathway suppression suggests profit from MDM2 inhibition if TP53 is wild-type."
           )
       return hypotheses if hypotheses else ["Complex multi-factorial dysregulation detected."]

We introduce drug repurposing and speculation technology brokers. We rating potential medication primarily based on the dysregulation of their targets and the community significance of affected genes, then compile interpretative hypotheses that hyperlink pathway exercise to doable interventions. The report technology engine summarizes these findings in a structured, readable format. Check out the FULL CODES here.

def run_advanced_omics_interpretation():
   print("🧬 Initializing Advanced Multi-Agent Omics System...n")
   omics = AdvancedOmicsGenerator.generate_coherent_omics()
   print("📊 Generated multi-omics dataset")
   stat_agent = StatisticalAgent()
   control_samples = [c for c in omics.transcriptomics.columns if 'Control' in c]
   disease_samples = [c for c in omics.transcriptomics.columns if 'Disease' in c]
   diff_trans = stat_agent.differential_analysis(omics.transcriptomics, control_samples, disease_samples)
   diff_prot = stat_agent.differential_analysis(omics.proteomics, control_samples, disease_samples)
   diff_metab = stat_agent.differential_analysis(omics.metabolomics, control_samples, disease_samples)
   temporal = stat_agent.temporal_analysis(omics.transcriptomics, omics.metadata)
   network_agent = NetworkAnalysisAgent(GENE_INTERACTIONS)
   master_regs = network_agent.find_master_regulators(diff_trans)
   causal_links = network_agent.causal_inference(diff_trans, diff_prot, diff_metab)
   pathway_agent = PathwayEnrichmentAgent(PATHWAY_DB, GENE_INTERACTIONS)
   enriched = pathway_agent.topology_weighted_enrichment(diff_trans, diff_metab, network_agent)
   drug_agent = DrugRepurposingAgent(DRUG_TARGETS)
   drug_predictions = drug_agent.predict_drug_response(diff_trans, master_regs)
   outcomes = {
       'temporal': temporal,
       'master_regs': master_regs,
       'causal': causal_links,
       'pathways': enriched,
       'medication': drug_predictions
   }
   hypothesis_engine = AIHypothesisEngine()
   report = hypothesis_engine.generate_comprehensive_report(omics, outcomes)
   print(report)
   return omics, outcomes


if __name__ == "__main__":
   omics_data, evaluation = run_advanced_omics_interpretation()

We orchestrate your entire workflow, operating all brokers sequentially and aggregating their outcomes into a complete report. We execute the pipeline end-to-end, from information technology to perception technology, verifying that every element contributes to the general interpretation. The last output offers an built-in multi-omics view with actionable insights.

In conclusion, this tutorial demonstrated how a structured, modular workflow can join completely different layers of omics information into an interpretable analytical framework. By combining statistical reasoning, community topology, and organic context, we produced a complete abstract that highlights potential regulatory mechanisms and candidate therapeutic instructions. The strategy stays clear, data-driven, and adaptable for each simulated and actual multi-omics datasets.


Check out the FULL CODES here. Feel free to take a look at our GitHub Page for Tutorials, Codes and Notebooks. Also, be at liberty to comply with us on Twitter and don’t neglect to affix our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.

The put up Build a Multi-Agent System for Integrated Transcriptomic, Proteomic, and Metabolomic Data Interpretation with Pathway Reasoning appeared first on MarkTechPost.

Similar Posts